1143. Longest Common Subsequence

題目

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

For example, "ace" is a subsequence of "abcde". A common subsequence of two strings is a subsequence that is common to both strings.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:

  • 1 <= text1.length, text2.length <= 1000
  • text1 and text2 consist of only lowercase English characters.

題目大意

給兩個string 求出, 這兩個string 的最長公共子序列的長度, 如果不存在返回0. 譬如 str1="abcde", str2="aceb", 輸出為3, 因為最長公共子序列是"ace"

解題思路

  1. 暴力解法, 用遞迴 dp(i,j) 表示 s1[0..i]和s2[0..j]中最長公共子序列的長度, 如果s1[i]==s2[j], 說明這個公共字符一定在lcs中, 如果知道了s1[0..i-1]和s2[0..j-1]中的lcs長度, 再加1就是s1[0..i]和s2[0..j]中lcs的長度

     if (str[i] == str2[j]) {
         dp(i,j) = dp(i-1,j-1)+1
     }
    

    如果s1[i]!=s2[j], 說明這兩個字符至少有一個不在lcs中,

     if (str[i] != str2[j]){
         dp(i,j) = max( dp(i-1,j) , dp(i,j-1))
     }
    
     def longestCommonSubsequence(str1,str2) ->int:
         def dp(i,j):
             # 空的base code
             if i == -1 or j == -1:
                 return 0
             if str[i] == str2[j]:
                 # 找到一個lcs中的元素
                 return dp(i-1, j-1)+1
             if str[i] != str2[j]:
                 # 至少有一個字符不在lcs中, 都試一下,看誰能讓lcs最長
                 return max( dp(i-1,j) , dp(i,j-1))
         return dp(len(str1)-1,len(str2)-1)
    
  2. DP優化

int longestCommonSubsequence(string str1, string str2) {
    int m = str1.size(), n = str2.size();
    // 定義對s1[0..i-1] 和 s2[0..j-1], 他們的lcs長度是dp[i][j]
    vector> dp(m + 1, vector(n + 1, 0));
    // base case: dp[0][...] = dp[..][0] = 0, 已初始化

    for (int i = 1; i 

來源

解答

https://github.com/kimi0230/LeetcodeGolang/blob/master/Leetcode/1143.Longest-Common-Subsequence/main.go

package longestcommonsubsequence

func LongestCommonSubsequence(text1 string, text2 string) int {
    var dp func(int, int) int
    dp = func(i, j int) int {
        if i == -1 || j == -1 {
            return 0
        }
        if text1[i] == text2[j] {
            return dp(i-1, j-1) + 1
        }
        if text1[i] != text2[j] {
            return max(dp(i-1, j), dp(i, j-1))
        }
        return 0
    }
    return dp(len(text1)-1, len(text2)-1)
}

func LongestCommonSubsequenceDP(text1 string, text2 string) int {
    m, n := len(text1), len(text2)
    if m == 0 || n == 0 {
        return 0
    }

    dp := make([][]int, m+1)
    for i := range dp {
        dp[i] = make([]int, n+1)
    }
    for i := 1; i <= 1="" m;="" i++="" {="" for="" j="" :="1;" <="n;" j++="" if="" text1[i-1]="=" text2[j-1]="" dp[i][j]="dp[i-1][j-1]" +="" }="" else="" dp[i-1][j])="" return="" dp[m][n]="" func="" max(a,="" b="" int)="" int="" a=""> b {
        return a
    }
    return b
}
goos: darwin
goarch: amd64
pkg: LeetcodeGolang/Leetcode/1143.Longest-Common-Subsequence
cpu: Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz
BenchmarkLongestCommonSubsequence-8                  100         737158262 ns/op               0 B/op          0 allocs/op
BenchmarkLongestCommonSubsequenceDP-8            2355297               491.3 ns/op           912 B/op          8 allocs/op
PASS
ok      LeetcodeGolang/Leetcode/1143.Longest-Common-Subsequence 75.400s
© Kimi Tsai all right reserved.            Updated : 2024-05-06 09:36:37

results matching ""

    No results matching ""