0703. Kth Largest Element in a Stream

題目

Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Implement KthLargest class:

KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums. int add(int val) Appends the integer val to the stream and returns the element representing the kth largest element in the stream.

Example 1:

Input ["KthLargest", "add", "add", "add", "add", "add"] [[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]] Output [null, 4, 5, 5, 8, 8]

Explanation KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]); kthLargest.add(3); // return 4 kthLargest.add(5); // return 5 kthLargest.add(10); // return 5 kthLargest.add(9); // return 8 kthLargest.add(4); // return 8

Constraints:

1 <= k <= 104 0 <= nums.length <= 104 -104 <= nums[i] <= 104 -104 <= val <= 104 At most 104 calls will be made to add. It is guaranteed that there will be at least k elements in the array when you search for the kth element. Accepted 479.1K Submissions 846.4K Acceptance Rate 56.6%

題目大意

設計一個找到數據流中第 k 大元素的類(class)。 注意是排序後的第 k 大元素,不是第 k 個不同的元素。 請實現 KthLargest 類:

  • KthLargest(int k, int[] nums) 使用整數 k 和整數流 nums 初始化物件。
  • int add(int val) 將 val 插入數據流 nums 後,返回當前數據流中第 k 大的元素。

解題思路

這題考察優先順序佇列的使用,可以先做下這道類似的題目 215.陣列中的第 K 個最大元素

golang container/heap

Big O

時間複雜 : 初始化時間複雜度為: O(nlog⁡k) ,其中 n 為初始化時 nums 的長度; 單次插入時間複雜度為: O(log⁡k)

空間複雜 : O(k)。 需要使用優先佇列存儲前 k 大的元素

來源

解答

https://github.com/kimi0230/LeetcodeGolang/blob/master/Leetcode/0703.Kth-Largest-Element-in-a-Stream/main.go

package kthlargestelementinastream

import (
    "container/heap"
    "sort"
)

/**
 * Your KthLargest object will be instantiated and called as such:
 * obj := Constructor(k, nums);
 * param_1 := obj.Add(val);
 */

// 時間複雜 O(), 空間複雜 O()
type KthLargest struct {
    sort.IntSlice
    k int
}

func Constructor(k int, nums []int) KthLargest {
    kl := KthLargest{k: k}
    for _, val := range nums {
        kl.Add(val)
    }
    return kl
}

func (kl *KthLargest) Add(val int) int {
    heap.Push(kl, val)
    if kl.Len() > kl.k {
        heap.Pop(kl)
    }
    return kl.IntSlice[0]
}

func (kl *KthLargest) Push(v interface{}) {
    kl.IntSlice = append(kl.IntSlice, v.(int))
}

func (kl *KthLargest) Pop() interface{} {
    a := kl.IntSlice
    v := a[len(a)-1]
    kl.IntSlice = a[:len(a)-1]
    return v
}

func KthLargestStream(k int, nums []int, elem []int) []int {
    obj := Constructor(k, nums)
    result := []int{0}
    for _, val := range elem {
        obj.Add(val)
        result = append(result, obj.IntSlice[0])
    }

    return result
}

Benchmark



© Kimi Tsai all right reserved.            Updated : 2024-05-06 09:36:37

results matching ""

    No results matching ""